
Results:
The NCL003 ML classifier template was applied to all BM files from all 21 patients 
studied. Of these patients, 3/21 were selected as negative controls, with no 
DTCs detected in any files; all 3 were low-risk NB cases. In the remaining 18 HR-NBL 
cases, the NCL003 ML classifier detected GD2+ve DTCs in 14/18 patients (1-63310 
DTCs/mL) and GD2-ve DTCs in 17/18 patients (1-5448 DTCs/mL) (Table 1).

For 16/21 patients studied, GD2-ve and GD2+ve circulating tumour cells (CTCs)/mL 
had previously been detected and counted in matched blood samples (Table 1)(4). In 
the blood, the NCL003 ML classifier detected GD2+ve CTCs in 9/13 high-risk patients 
(1-86 CTCs/mL) and GD2-ve CTCs in 11/13 (1-98 CTCs/mL) (Table 1)(4).

Notably, the NCL003 ML classifier was able to detect GD2-ve, hyperdiploid DTCs and 
CTCs in both the BM and the blood for NCL004, a high-risk, relapse patient with no 
GD2+ve DTCs or CTCs.

Detection of GD2-ve DTCs using ML
GD2-ve DTCs were visually confirmed to have similar Bf and nuclear morphology as 
GD2+ve DTCs. Ploidy status of both the GD2-ve and GD2+ve populations was 
confirmed to be the same as the primary tumour (Fig. 3B).

Patient Diagnosis/Relapse Risk Ploidy status MYCN amplified
BM 

involved 
(Yes/No)

GD2+ve DTCs/mL 
detected by NCL003 

ML Template

GD2-ve DTCs 
detected by NCL003 

ML Template

GD2+ve CTCs/mL 
detected by NCL003 

ML Template

GD2-ve CTCs/mL 
detected by NCL003 

ML Template

BRI005 Diagnosis Low - Non-MYCN amplified No 0 0 0 0

NCL001 Relapse Low - Non-MYCN amplified No 0 0 0 0

MAN006 Relapse Low - Non-MYCN amplified No 0 0 0 0

NCL003 Diagnosis High Hyperdiploid MYCN amplified Yes 16311 5448 86 28

NCL005 Diagnosis High Hyperdiploid Non-MYCN amplified Yes 242 23 3 1

NCL011 Diagnosis High Hyperdiploid MYCN amplified No 8245 932 14 4

BRI001 Diagnosis High Diploid Non-MYCN amplified Yes 41 27 0 1

NCL012 Diagnosis High Diploid Non-MYCN amplified No 365 34 1 0

BRI004 Diagnosis High Diploid Non-MYCN amplified Yes 406 2 6 2

MAN003 Diagnosis High Hyperdiploid Non-MYCN amplified Yes 63310 2816 34 11

MAN004 Diagnosis High Diploid Non-MYCN amplified Yes 16 129 0 12

MAN005 Diagnosis High Diploid Non-MYCN amplified Yes 0 765 0 5

GLA001 Diagnosis High Diploid Non-MYCN amplified Yes 169 11 3 0

GLA002 Diagnosis High Diploid Non-MYCN amplified Yes 712 156 14 28

NCL004 Relapse High Hyperdiploid Non-MYCN amplified No 0 1370 0 98

NCL008 Relapse High Hyperdiploid MYCN amplified No 1 1 6 31

NCL013 Relapse High Hyperdiploid MYCN amplified No 162 9 - -

NCL007 Diagnosis High Hyperdiploid MYCN amplified Yes 0 1 - -

NCL009 Diagnosis High Diploid Non-MYCN amplified Yes 12363 239 - -

MAN002 Diagnosis High Diploid MYCN amplified Yes 0 0 - -

GLA004 Relapse High Diploid MYCN amplified Yes 31 2 - -

Total 102374.0 11965.0 167.0 221.0

Mean 4875.0 569.8 10.4 13.8

St Dev 14136.6 1308.1 22.0 25.0

Methods:
Patient samples 
This study included 21 patients for analysis of DTCs. ISx data, obtained from BM 
samples from a previous study, was used(3).

Software used
Amnis IDEAS 6.4 image analysis software was used to analyse patient data 
files, generated using the ISx from a previous study(3).

Identification of truth and base populations for machine learning
To create the 'base' population for machine learning, round single cells were gated 
on a scatter plot of area versus aspect ratio intensity, excluding multiple cells and 
fragments (Fig. 1A), and in focus cells were gated on a histogram of brightfield 
(Bf) gradient root mean square (RMS) (Fig. 1B).

25 GD2+ve/CD45-ve DTCs, with an intact DAPI-stained nucleus, were visually 
identified from a CD45 versus GD2 intensity scatter plot (Fig. 2A) and tagged as a 
'truth' population for machine learning (Fig. 2B).

Initially, 200 cells, visually confirmed as 'non-DTCs', were identified and tagged as 
another 'truth' population. However, as this separated the 'truth' populations 
poorly, an additional 3 'truth' populations, corresponding to areas of high CD45, 
low CD45, and 'false positive' DTCs identified by the initial ML classifier, were 
included, with 25 cells in each additional 'truth' population.

Machine Learning (ML)
The ML module within IDEAS was used to compute classifier features to separate 
the manually identified truth populations and combine them into a single score 
using Linear Discriminant Analysis. 'Truth' and 'base' populations, previously 
identified, were selected, and all features within the Size, Comparison, Shape, 
Texture and Location categories for the Bf and DAPI channels were included. The 
NCL003 ML classifier template maximally separated 'truth' populations and was 
therefore applied as an inter-sample ML classifier template.

Detection of GD2 negative cells in bone marrow from patients 
with high-risk neuroblastoma using machine learning
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Figure 1. Creation of 'base' population for ML. A. Scatter plot of area versus aspect ratio intensity, 
gated to include round single cells. B. Histogram of Bf gradient RMS, gated to include in focus cells.

Introduction:
Neuroblastoma (NB) is the most common extracranial solid tumour in children, 
accounting for approximately 15% of all paediatric cancer-related deaths(1). 
Patients with high-risk neuroblastoma (HR-NB) (defined in Europe as metastatic 
disease over 1 year of age or MYCN amplified) are given immunotherapy which 
targets disialoganglioside (GD2), a tumour-associated antigen expressed by almost 
all NB patients(2,3). NB often metastasises to the bone marrow (BM) and the 
presence of GD2 expression and the absence of CD45 expression can be used to 
detect BM metastasis. However, loss of GD2 expression in NB BM metastases has 
been reported(2). As anti-GD2 immunotherapy is routinely used in treatment, it is 
crucial to be able to detect and characterise GD2-ve cells. This study involved data 
collected from a previous study, using the ImageStream X Imaging Flow 
Cytometer (ISx), and aimed to detect GD2-ve disseminated tumour cells (DTCs) 
from BM samples from HR-NB patients using a machine learning (ML) algorithm.

Table 1. Summary table comparing the number of GD2+ve and GD2-ve DTCs per mL to the number of CTCs 
detected per mL detected by the NCL003 ML classifier template in relation to risk group, ploidy status, 
MYCN amplification status and BM involvement.
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Figure 2. Identification of DTC 'truth' population. A. Scatter plot of CD45 vs GD2 intensity, gated to 
include GD2+ve/CD45-ve cells. B. Example images of GD2+ve/CD45-ve cells included in the DTC 
'truth' population for ML.

B

Conclusions:
This study demonstrated that GD2-ve DTCs can be detected in BM samples from HR-
NB patients, indicating that this method could be utilised for the detection of GD2 
loss following anti-GD2 directed immunotherapy. However, the findings should be 
extended to a larger cohort of patients to confirm clinical relevance. This would 
allow the prognostic significance of a GD2-ve cell population to be evaluated.  
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Figure 3. Characterisation of GD2-ve DTCs. A. Bf and nuclear morphology of GD2-ve/CD45-ve cells compared 
to GD2+ve/CD45-ve DTCs to confirm similar circular nuclear shape and size. B. DTC population overlaid onto 
DAPI intensity histogram to confirm similar ploidy status between GD2-ve and GD2+ve cells and same ploidy 
status as primary tumour. In this case the tumour is hyperdiploid.
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