Detection of GD, negative cells in bone marrow from patients
with high-risk neuroblastoma using machine learning
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Introduction:

Neuroblastoma (NB) is the most common extracranial solid tumour in children,
accounting for approximately 15% of all paediatric cancer-related deaths'?.
Patients with high-risk neuroblastoma (HR-NB) (defined in Europe as metastatic
disease over 1 year of age or MYCN amplified) are given immunotherapy which
targets disialoganglioside (GD,), a tumour-associated antigen expressed by almost
all NB patients(?23). NB often metastasises to the bone marrow (BM) and the
presence of GD, expression and the absence of CD45 expression can be used to
detect BM metastasis. However, loss of GD, expression in NB BM metastases has
been reported?). As anti-GD, immunotherapy is routinely used in treatment, it is
crucial to be able to detect and characterise GD,-ve cells. This study involved data
collected from a previous study, using the ImageStream X Imaging Flow
Cytometer (1Sx), and aimed to detect GD,-ve disseminated tumour cells (DTCs)
from BM samples from HR-NB patients using a machine learning (ML) algorithm.

Methods:

Patient samples
This study included 21 patients for analysis of DTCs. ISx data, obtained from BM
samples from a previous study, was used®®).

Software used
Amnis IDEAS 6.4 image analysis software was used to analyse patient data
files, generated using the ISx from a previous study®).

Identification of truth and base populations for machine learning

To create the 'base’ population for machine learning, round single cells were gated
on a scatter plot of area versus aspect ratio intensity, excluding multiple cells and
fragments (Fig. 1A), and in focus cells were gated on a histogram of brightfield

(Bf) gradient root mean square (RMS) (Fig. 1B).
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Figure 1. Creation of 'base’ population for ML. A. Scatter plot of area versus aspect ratio intensity,
gated to include round single cells. B. Histogram of Bf gradient RMS, gated to include in focus cells.

25 GD,+ve/CD45-ve DTCs, with an intact DAPI-stained nucleus, were visually
identified from a CD45 versus GD, intensity scatter plot (Fig. 2A) and tagged as a
'truth’ population for machine learning (Fig. 2B).
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Figure 2. Identification of DTC "truth’' population. A. Scatter plot of CD45 vs GD, intensity, gated to
include GD,+ve/CD45-ve cells. B. Example images of GD,+ve/CD45-ve cells included in the DTC
'truth’ population for ML.

Initially, 200 cells, visually confirmed as 'non-DTCs', were identified and tagged as
another 'truth' population. However, as this separated the 'truth' populations
poorly, an additional 3 'truth' populations, corresponding to areas of high CD45,
low CD45, and 'false positive' DTCs identified by the initial ML classifier, were
included, with 25 cells in each additional 'truth' population.

Machine Learning (ML)

The ML module within IDEAS was used to compute classifier features to separate
the manually identified truth populations and combine them into a single score
using Linear Discriminant Analysis. 'Truth' and 'base' populations, previously
identified, were selected, and all features within the Size, Comparison, Shape,
Texture and Location categories for the Bf and DAPI channels were included. The
NCLOO3 ML classifier template maximally separated 'truth' populations and was

therefore applied as an inter-sample ML classifier template.

Results:
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The NCLOO3 ML classifier template was applied to all BM files from all 21 patients
studied. Of these patients, 3/21 were selected as negative controls, with no

DTCs detected in any files; all 3 were low-risk NB cases. In the remaining 18 HR-NBL
cases, the NCLOO3 ML classifier detected GD,+ve DTCs in 14/18 patients (1-63310
DTCs/mL) and GD,-ve DTCs in 17/18 patients (1-5448 DTCs/mL) (Table 1).

For 16/21 patients studied, GD,-ve and GD,+ve circulating tumour cells (CTCs)/mL
had previously been detected and counted in matched blood samples (Table 1)4). In
the blood, the NCLO0O3 ML classifier detected GD,+ve CTCs in 9/13 high-risk patients
(1-86 CTCs/mL) and GD,-ve CTCs in 11/13 (1-98 CTCs/mL) (Table 1))

Table 1. Summary table comparing the number of GD,+ve and GD,-ve DTCs per mL to the number of CTCs
detected per mL detected by the NCLOO3 ML classifier template in relation to risk group, ploidy status,
MYCN amplification status and BM involvement.

Patient Diagnosis/Relapse Risk Ploidy status MYCN amplified

BM

involved
(Yes/No)

GD2+ve DTCs/mL
detected by NCLO0O3 detected by NCL0O03 detected by NCLO0O3 detected by NCLOO3

ML Template ML Template

GD2-ve DTCs

ML Template

GD2+ve CTCs/mL

GD2-ve CTCs/mL

ML Template

BRI0O05
NCLOO1
MANO06

Diagnosis
Relapse

Relapse

Low
Low

Low

Non-MYCN amplified
Non-MYCN amplified
Non-MYCN amplified

No
No
No

0
0
0

0
0
0

NCLO03
NCLOO05
NCLO11
BRI001
NCLO12
BRI004
MANOO03
MANO004
MANO05
GLAOO1
GLA002
NCLO04
NCLO08

Diagnosis
Diagnosis
Diagnosis
Diagnosis
Diagnosis
Diagnosis
Diagnosis
Diagnosis
Diagnosis
Diagnosis
Diagnosis
Relapse

Relapse

High
High
High
High
High
High
High
High
High
High
High
High
High

Hyperdiploid
Hyperdiploid
Hyperdiploid
Diploid
Diploid
Diploid
Hyperdiploid
Diploid
Diploid
Diploid
Diploid
Hyperdiploid
Hyperdiploid

MYCN amplified
Non-MYCN amplified
MYCN amplified
Non-MYCN amplified
Non-MYCN amplified
Non-MYCN amplified
Non-MYCN amplified
Non-MYCN amplified
Non-MYCN amplified
Non-MYCN amplified
Non-MYCN amplified
Non-MYCN amplified
MYCN amplified

Yes
Yes
No
Yes
No
Yes
Yes
Yes
Yes
Yes
Yes
No
No

16311
242
8245
41
365
406
63310
16

169
712
0
1

86
3
14
0
1
6
34
0
0
3
14
0
6

NCLO13
NCLO07
NCLO09
MANO002
GLAO04

Relapse
Diagnosis
Diagnosis
Diagnosis

Relapse

High
High
High
High
High

Hyperdiploid
Hyperdiploid
Diploid
Diploid
Diploid

MYCN amplified
MYCN amplified
Non-MYCN amplified
MYCN amplified
MYCN amplified

No
Yes
Yes
Yes

Yes

162
0
12363
0
31

Total
Mean
StDev

102374.0
4875.0
14136.6

11965.0
569.8
1308.1

167.0 221.0
104 13.8
22.0 25.0

Notably, the NCLOO3 ML classifier was able to detect GD,-ve, hyperdiploid DTCs and
CTCs in both the BM and the blood for NCLOO4, a high-risk, relapse patient with no
GD,+ve DTCs or CTCs.

Detection of GD,-ve DTCs using ML

GD,-ve DTCs were visually confirmed to have similar Bf and nuclear morphology as
GD,+ve DTCs. Ploidy status of both the GD,-ve and GD,+ve populations was

confirmed to be the same as the primary tumour (Fig. 3B).
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Figure 3. Characterisation of GD,-ve DTCs. A. Bf and nuclear morphology of GD,-ve/CD45-ve cells compared
to GD,+ve/CD45-ve DTCs to confirm similar circular nuclear shape and size. B. DTC population overlaid onto
DAPI intensity histogram to confirm similar ploidy status between GD,-ve and GD,+ve cells and same ploidy
status as primary tumour. In this case the tumour is hyperdiploid.

Conclusions:

This study demonstrated that GD,-ve DTCs can be detected in BM samples from HR-
NB patients, indicating that this method could be utilised for the detection of GD,
loss following anti-GD, directed immunotherapy. However, the findings should be
extended to a larger cohort of patients to confirm clinical relevance. This would
allow the prognostic significance of a GD,-ve cell population to be evaluated.
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